Package: corrMCT (via r-universe)

September 2, 2024

September 2, 2024	
Type Package	
Title Correlated Weighted Hochberg	
Version 0.2.0	
Description Perform additional multiple testing procedure methods to p.adjust(), such as weighted Hochberg (Tamhane, A. C., & Liu, L., 2008) <doi:10.1093 asn018="" biomet="">, ICC adjusted Bonferroni method (Shi, Q., Pavey, E. S., & Carter, R. E., 2012) <doi:10.1002 pst.1514=""> and a new correlation corrected weighted Hochberg for correlated endpoints.</doi:10.1002></doi:10.1093>	
License GPL (>= 3)	
Encoding UTF-8	
RoxygenNote 7.3.2	
Imports dplyr, glue, magrittr, Matrix, tibble	
NeedsCompilation no	
Author Xin-Wei Huang [aut, cre] (https://orcid.org/0000-0003-4238-3081), Jia Hua [ctb], Bhramori Banerjee [ctb], Xuelong Wang [ctb], Qing Li [ctb], Merck & Co., Inc [cph, fnd]	
Maintainer Xin-Wei Huang <xinweihuangstat@gmail.com></xinweihuangstat@gmail.com>	
Date/Publication 2024-08-02 12:50:03 UTC	
Repository https://xinweibuffalo.r-universe.dev	
RemoteUrl https://github.com/cran/corrMCT	
RemoteRef HEAD	
RemoteSha 1a15833fa07155809e23013f9c8dc4d83065bc9a	
Contents	
corr.Bonferroni corr.WHC corrmat_AR1 corrmat_block	

2 corr.Bonferroni

	corrmat_blockAR1	5
	corrmat_CS	6
	WHC	6
Index		8

corr.Bonferroni

ICC adjusted Bonferroni method

Description

corr.Bonferroni performs the ICC adjusted Bonferroni method proposed by Shi, Pavey, and Carter(2012). Power law approximation by r is tricky, suggested options was listed in the paper.

Usage

```
corr.Bonferroni(p, ICC, r = 0, alpha = 0.05)
```

Arguments

p	A numeric vector. A length m P-value vector from multiple tests.
ICC	A number. Intraclass correlation correction factor, a real number between (0, 1).
r	A number. Tuning parameter for g^{**} between $(0, 1)$. Default $r=0$.
alpha	A real number. $1-\alpha$ is the confidence level, alpha must between $(0,1)$.

Value

A numeric vector of adjusted p-values.

References

Shi, Q., Pavey, E. S., & Carter, R. E. (2012). Bonferroni-based correction factor for multiple, correlated endpoints. Pharmaceutical statistics, 11(4), 300-309.

Examples

```
m <- 10
corr.Bonferroni(
  p = runif(m),
  ICC = 0.3
)</pre>
```

corr.WHC 3

corr.WHC	Correlation adjusted weighted Hochberg method	

Description

A new method implement correlation correction based on weighted Hochberg. An ACF is applied for weight reduction to conserve alpha. Details see Huang et al. (2024+). A correlation structure with too many zero leads the method reduce to weighted Hochberg.

Usage

```
corr.WHC(p, w, corr.mat, a = 0.5, b = 0.6, penalty = NULL, alpha = 0.05)
```

Arguments

p	A numeric vector. A length m P-value vector from multiple tests.
w	A numeric vector. Any non-negative real numbers to denote the importance of the endpoints. Length must be equal to m . A single value, e.g. $w=1$, represents equal weight. WHC can scale the weight vector as if the sum of weight is not 1.
corr.mat	A matrix. The dimension must be $m \times m$. Positive correlation is the theoretical assumption, however, it is robust to run with some negative elements in the correlation matrix.
а	A numeric number. $a\in(0,1)$ determines the greatest penalty on weight, Default a=0.5. Details see Huang et al (2024+).
b	A numeric number. $b\in(0,1)$ is the shape parameter of the penalty function. $b=1$ produce a linear function.
penalty	A function. User can define their own penalty function. The basic rule is the function must be monotone decreasing from 0 to 1, and range from 1 to a where $a \in (0,1)$. A convex function is recommended. Concave function can produce result, but have no meaning on alpha conserving.
alpha	A real number. $1 - \alpha$ is the confidence level, alpha must between $(0, 1)$.

Value

A table contains p-values, weights, adjusted critical values, significance

References

Huang, X. -W., Hua, J., Banerjee, B., Wang, X., Li, Q. (2024+). Correlated weighted Hochberg procedure. In-preparation.

4 corrmat_block

Examples

```
m <- 5
corr.WHC(
  p = runif(m),
  w = runif(m),
  corr.mat = cor(matrix(runif(10*m), ncol = m))
)</pre>
```

corrmat_AR1

AR(1) correlation matrix

Description

An easy function to generate a AR(1) correlation matrix.

Usage

```
corrmat_AR1(m, rho)
```

Arguments

m An integer. Dimension of the correlation matrix.

rho A number. Correlation coefficient between (0, 1)

Value

A correlation matrix

Examples

```
corrmat_AR1(
    m = 3,
    rho = 0.2
)
```

corrmat_block

Block design correlation matrix

Description

An easy function to generate a block design correlation matrix. Each diagonal element R_i is a compound symmetric matrix with dimension $d_i \times d_i$. Correlation coefficient in each block is ρ_i . All the off-diagonal elements are 0.

Usage

```
corrmat_block(d, rho)
```

corrmat_blockAR1 5

Arguments

d An integer vector. Length B of block dimensions. Element of d can be 1, it

would not generate a sub-matrix with the corresponding element in rho, but just

1.

rho A numeric vector. A length B vector of correlation coefficients, represent B

different block of correlation matrix.

Value

A correlation matrix

Examples

```
corrmat_block(
  d = c(2,3,4),
  rho = c(0.1, 0.3, 0.5)
)
```

corrmat_blockAR1

Block AR(1) design correlation matrix

Description

An easy function to generate a block AR(1) design correlation matrix. Each diagonal element R_i is an AR(1) correlation matrix with dimension $d_i \times d_i$. Correlation coefficient in each block is ρ_i . All the off-diagonal elements are 0.

Usage

```
corrmat_blockAR1(d, rho)
```

Arguments

d An integer vector. Length B of block dimensions. Element of d can be 1, it

would not generate a sub-matrix with the corresponding element in rho, but just

1.

rho A numeric vector. A length B vector of correlation coefficients, represent B

different block of correlation matrix.

Value

A correlation matrix

Examples

```
corrmat_blockAR1(
  d = c(2,3,4),
  rho = c(0.1, 0.3, 0.5)
)
```

6 WHC

corrmat_CS

Compound symmetric correlation matrix

Description

An easy function to generate a compound symmetric correlation matrix

Usage

```
corrmat_CS(m, rho)
```

Arguments

m An integer. Dimension of the correlation matrix.

rho A number. Correlation coefficient between (0, 1)

Value

A correlation matrix

Examples

```
corrmat_CS(
    m = 3,
    rho = 0.2
)
```

WHC

Weighted Hochberg method

Description

WHC performs the weighted Hochberg method proposed by Tamhane and Liu (2008).

Usage

```
WHC(p, w, alpha = 0.05)
```

Arguments

р	A numeric vector. A length m P-value vector from multiple tests.
W	A numeric vector. Any non-negative real numbers to denote the importance of
	the endpoints. Length must be equal to m . A single value, e.g. $w = 1$, represents
	equal weight. WHC can scale the weight vector as if the sum of weight is not 1.

alpha A real number. $1 - \alpha$ is the confidence level, alpha must between (0, 1).

WHC 7

Value

A table contains p-values, weights, adjusted critical values, significance

References

Tamhane, A. C., & Liu, L. (2008). On weighted Hochberg procedures. Biometrika, 95(2), 279-294.

Examples

```
m <- 5
WHC(
   p = runif(m),
   w = runif(m)
)</pre>
```

Index

```
corr.Bonferroni, 2
corr.WHC, 3
corrmat_AR1, 4
corrmat_block, 4
corrmat_blockAR1, 5
corrmat_CS, 6
WHC, 6
```